Leveraging AI for Industrial IoT

Chetan Gupta, Ph.D.
Chief Data Scientist, Big Data Lab,
Hitachi America Ltd.
Date: Sept. 19th, 2017
Level Set

Data → Machine Learning & Artificial Intelligence → Outcomes
AI/ML Algorithms

- Rule Based AI
- "Traditional" Machine Learning: SVMs, Random Forests, etc.
- Deep Learning: CNN, RNN, LSTM, etc.

Compute

Accuracy

© Hitachi, Ltd. 2017. All rights reserved.
Example – Fraud Detection

Credit Card Transactions → Rule Based, Anomaly Detection → Flag Credit Card Fraud

Transaction Data, Descriptive
Example – Churn Prediction

Activity, Behavioral Data → Classification Techniques → Predict the probability of losing a customer

Transaction/Social Media Data, Predictive
Example – Product Recommendation

Collaborative Filtering

Social Media Data

Recommend ads, products, movies, etc.

Social Media Data, Prescriptive
Example – Autonomous Vehicles

Video, Lidar, etc. → Deep Neural Nets → Self Driving Cars

Sensor Data, Autonomous
Impact

<table>
<thead>
<tr>
<th>Category</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products & Services</td>
<td>Personalization of Services, Automation in Products</td>
</tr>
<tr>
<td>Sales</td>
<td>Up Sell, Cross Sell, Customer Retention</td>
</tr>
<tr>
<td>Marketing</td>
<td>Micro campaigns, Targeted Advertising</td>
</tr>
<tr>
<td>Customer Support</td>
<td>Fielding Service/Support Calls</td>
</tr>
<tr>
<td>Human Resource</td>
<td>Talent Acquisition & Retention</td>
</tr>
<tr>
<td>Operational</td>
<td>...</td>
</tr>
</tbody>
</table>
Industrial IoT
Industrial Analytics

- Increase Asset Availability
- Increase Asset Utilization
- Improve Product Quality
- Increase Safety & Reliability of Operations
- Reduce Operations and Maintenance Cost
- Enhanced Operational Control & Planning
<table>
<thead>
<tr>
<th>Analytics</th>
<th>Maintenance</th>
<th>Operations</th>
<th>Quality</th>
</tr>
</thead>
</table>
| **Descriptive** | 1. Equipment Monitoring
2. Performance Analytics
3. Maintenance Analytics
4. Equipment Failure Root Cause Analysis | 1. Operations Monitoring
2. Characterize Process
3. Operator Behavior
4. Operation Failure Root Cause Analysis | 1. Quality Monitoring
2. Testing Process Monitoring & Evaluation
3. Detect Quality Loss
4. Defect Root Cause Analysis |
| **Predictive** | 1. Predict Failures
2. Estimate RUL
3. Predict Failure Impact | 1. Predict Activity Time
2. Predict Production KPI(s)
3. Demand Forecasting
4. Supply Chain Disruption | 1. Early Defect Detection
2. Yield Quality Predict. |
| **Prescriptive** | 1. Reduce Failure Cost
2. Reduce Failure Rate
3. Repair Recommendation
4. Optimize Maintenance | 1. Failure Rate Reduction
2. Fuel/Energy Reduction
3. Equipment Scheduling and Dynamic Dispatch
2. Improve Testing |
Example – Maintenance Effectiveness Estimation

Determine the effectiveness of each maintenance activity, vendor, practice, etc. to improve maintenance operations.

Sensor Data, Descriptive
Example – Operator Profiling

Characterize the efficiency, safety of operator behavior to improve operations

Operations

Sensor Data/Video Data, Descriptive

Feature extraction

Machine Learning Data Model

Operator Behavior Profiling

© Hitachi, Ltd. 2017. All rights reserved.
Example – Quality Test Failure Prediction

Predict failures earlier in process

Sensor Data, Predictive
Example – Repair Recommendation

Recommend the correct repair to reduce repair mistakes and cost of repairs.

- **Symptom (Free text)**
- **NLP**
- **Machine Learning**
- **Data Model**
- **Historical repair data**
- **Sensor/Maintenance Data, Prescriptive**

© Hitachi, Ltd. 2017. All rights reserved.
Example – Mining Operations

Improve OEE for mining operations with automated dispatching

Operational/Simulation Data, Autonomous
Next Stage of Industrial AI

Value of Insights = Business Impact

- **Prescriptive Analytics**
 - Recommendation of best action
 - Maintenance Recommendation
 - Operating Envelope Recommendation

- **Predictive Analytics**
 - A view of the future
 - Failure Prediction
 - Activity Time Prediction
 - Batch Quality Prediction

- **Descriptive Analytics**
 - Insights on the present
 - Performance Monitoring
 - Operations Monitoring
 - Quality Monitoring

Prescriptive analytics × AI Driven Control

Total Operation Optimization & Automation

Scope of Control

- Individual
- Fleets
- End-to-end

Predictive Maintenance
Operations Optimization
Quality Improvement
Next Stage of Industrial AI

Al Driven
Control

Recommend actions to achieve multi-objective optimization with machine learning, AI, and simulation

Connected Industries

Geographically distributed production systems

Material
Equipment
Process
Product

Supply Chain & Logistics

Up to 85%

© Hitachi, Ltd. 2017. All rights reserved.
Next Steps and Conclusions
Complexity of Automation

- Control (secs – mins)
- Operations (mins – days)
- Strategy (days – months)

Enterprise

AI/ML

Number of sub-components

Complexity of Automation

© Hitachi, Ltd. 2017. All rights reserved.
Cost Tradeoffs

Failure Prediction: Accuracy-Gain tradeoff

- Failure Cost
- False Alarm Cost
- Total Cost

No Solution	Solution #1	Solution #2	Solution #3	Solution #4	Solution #5	Solution #6
Cost | $0 | $20,000 | $40,000 | $60,000 | $80,000 | $100,000

Performance Degradation Detection: Accuracy-Latency tradeoff

- Degradation Cost
- Detection Error Cost
- Total Cost

No Solution	Solution #1	Solution #2	Solution #3	Solution #4	Solution #5	Solution #6	Solution #7	Solution #8	Solution #9
Cost | $0 | $20,000 | $40,000 | $60,000 | $80,000 | $100,000 | $120,000 | $140,000 | $160,000

© Hitachi, Ltd. 2017. All rights reserved.
In Conclusion

“…I am very optimistic about the eventual outcome of the work on machine solution of intellectual problems. Within our lifetime machines may surpass us in general intelligence….”

– Marvin Minsky, 1967

It’s difficult to make predictions especially about the future
Thank You
NEXT 2017
LEAD WHAT'S NEXT