First, a Question.. What kind of ‘Custom Workflows’ are we talking about?
 Answer: Workflows involving machine learning

Machine Learning has gained tremendous velocity over the past decade
 What are the drivers fueling ML adoption?
 Predictive Analytic techniques widely used today
 ML techniques that have been popular over the past decade
 Deep Learning Neural Networks

Framing the next decade of ML and Industrial IoT

Achieving Portability and Scale with ML
 What are some of the core challenges?
 • Precision, reliability, stability
 • Support for heterogeneous techniques, languages, tools
 • Reduce human involvement at scale

Lumada Analytics and Pentaho
 A perfect match for going both deep and wide
What are the Drivers Fueling ML Adoption Today?

- **Cloud Computing**
 - Ubiquitous access to computing power
 - Elasticity on-demand
 - Commodity pricing

- **Exponential increase in data generated**
 - Need strategy to deal with data flooding
 - Search queries, social media, consumer purchases, financial transactions, consumer IoT, industrial IoT, etc.

- **Accumulation of massive datasets**
 - Search queries, social media, consumer purchases, financial transactions, credit history, consumer IoT, industrial IoT, etc.

- **Track record of successful ML implementations in industry**
 - Fraud detection, data security, financial trading, personalization, recommendation, digital assistants, etc.

Rhetorical Question: How much of the data generated is retained? If so, for how long?
1. Simple Methods: Basic predictors, Linear estimation, Historical Patterns, Heuristics, etc.

2. Regression Analysis
 - Linear regression
 - Logistic regression
 - Poisson regression
 - Least Square Regression

3. Machine Learning - Many different techniques to choose from… let’s double click on this…
ML Techniques Popular over the Past Decade

‘Big Ten’ - ML Algorithms Widely Used Today

1. Decision Trees
2. Naïve Bayes Classification
3. Least Square Regression
4. Logistic Regression
5. Support Vector Machines
6. Ensemble Methods
7. Unsupervised Learning
8. Principal Component Analysis
9. Singular Value Decomposition
10. Independent Component Analysis

Source: http://www.kdnuggets.com/2016/08/10-algorithms-machine-learning-engineers.html
Will Deep Learning Dominate the Next Decade?

- Deep Learning is a term most often associated with Artificial Neural Networks (ANN)
- Multi-layer Neural Networks show tremendous promise for discovering and learning patterns in large datasets
- Has gathered significant industry mindshare- but not expected to be dominant in Industrial IoT
- However, perhaps ANNs are less than ideal for many industrial challenges requiring ML
 - Challenges include: Explaining causality, Imposing real-world limitations, catastrophic forgetting, stability of output over time, etc.
What Does Old-guard Academia Think…

…about the potential of Deep Neural Networks?

<table>
<thead>
<tr>
<th>Tom Mitchell</th>
<th>Ray Mooney</th>
<th>Jude Shavlik</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMU</td>
<td>U of TX</td>
<td>U of WI</td>
</tr>
</tbody>
</table>

- **Track how technology is transforming work**
- **What machine learning teaches us about the brain**
- **Natural-Language Video Description with Deep Recurrent Neural Networks**
 - [Details](#) [PDF](#) [Slides (PDF)](#)

CS 638 - Building Deep Neural Networks (Spring 2017)
Machine Learning by Tom Mitchell (1997)
Outlook for the Next Decade of ML and Industrial IoT

1. A decade dominated by the ubiquitous application of ML techniques that are already proven to work

2. A ‘one size fits all’ or unified approach to ML for Industrial IoT proves illusive

3. A diverse set of predictive analytic techniques and platforms will be relevant in the decade ahead

4. Standardization will be less important than finding something that works (..many IIoT outcomes are easily quantified and will be)

5. Deep Learning variants are on the frontier of research
What are some of the core challenges?

- Precision, reliability, stability
 - Are you OK with a system that is right 99% of the time?
 - How much do you value day-to-day stability?
 - Are you willing to trade a chance for greater precision for some lack of stability?

- Support for heterogeneous techniques, languages, tools
 - Can you afford to live in a ‘walled garden’ or do you need great flexibility?

- Find ways to reduce human involvement at scale
 - What level of automation do you need to be successful at scale?
 - Can you afford to have a human in the loop?
Achieving Portability and Scale with ML

Target a platform that supports:

- Embrace and extend existing predictive analytic methods in use today
 - *Support a range of established ML techniques*
- Integrate readily with established & emerging Open Source Software projects
 - Avoid living in a ‘walled garden’
- Support integration of data sources and analytic outcomes with other Enterprise applications
 - *Data Blending from different sources is a core competency*
Lumada: a Composable, Modular platform

- Lumada Analytics runs on top of Lumada Foundry
- Lumada Studio runs on top of Analytics (and other things)
- Custom Solutions are built on top of everything else
Platform

Lumada Industrial IoT

Custom Solutions

Solution Cores

Studio

Machines

Humans

Business Systems

Catalog

Edge
Core
Analytics
Foundry
RT
Design Guidelines for Lumada Analytics

1. **Heterogeneous Engines**: Analytics Platform should support diverse analytics requirements

2. **Scalable**: Analytics Platform has to be (“just add water”) scalable in cloud, on-prem and hybrid environments

3. **Machine Learning**: Analytics platform should power machine learning pipelines (run, train, build model, retrain, test, deploy/publish)

4. **Extensible**: Extending the Analytics Platform should be easy, painless and friction-free
Lumada Analytics: Portability and Scale

Lumada Analytics is a multi-engine framework that enables the use of a common workflow specification to support data processing pipelines that are portable & reusable. Solution Templates (JSON file format) are used to capture data processing workflow specifications.

The Lumada Analytics demo will demonstrate how to Train, Deploy and Run ML-based analytic models in 60 seconds.

We’ll also look out how complex Analytic Workflows can be captured in a portable, reusable specification that can be deployed to dozens or even hundreds of hosts.
Pentaho Analytics: Integrate and Analyze

Lumada Analytics
Analytics Workflow
Input (a) --> P(i) --> Output (b)
Analytics Pipelines
\[P(i) = f(x) + f(y) + f(z) \]
Analytics Functions
Analytics Engines
Python
R
Pentaho
HSDP
PySpark
Java
Node Red
Others

Data Integration
- Visual workflow designer
- Orchestrate ETL at scale
- Comprehensive data source library

Data Preparation
- Visual transformation designer
- Adaptive execution with Spark
- Integrated scripting for ML use cases

Visual Analysis
- Integrated data exploration
- OLAP analysis
- Production reporting and dashboards

“NewCo” Foundry

• Visual workflow designer
• Orchestrate ETL at scale
• Comprehensive data source library

• Visual transformation designer
• Adaptive execution with Spark
• Integrated scripting for ML use cases

• Integrated data exploration
• OLAP analysis
• Production reporting and dashboards
Pentaho Data Integration and Analytics

- Visual Data Transformation and Exploration
 - Access and Inspect
 - Cleanse and Transform
 - Blend and Persist
Wireless Data Analysis Example

- Analyze Communication Link Health
 - Cellular communication infrastructure

Test and Train

Deploy

Run

Train
Lumada Analytics: Management Console

- Managing Workflows at Scale